SIBERIA II and NORTH

A project funded by the European Commission

Christiane Schmullius FSU Jena, Germany

Status June 2005

SIBERIA-II Objective:

Develop multi-sensor concepts for Greenhouse Gas Accounting of Northern Eurasia

Project Region 3.2 Mio sąkm N-S transect to prepare climate change scenarios for the pan-boreal belt

Operational EO-Products for Greenhouse Gas Accounting

Greenhouse Gas Parameter =	Parameter Synergies	Main Sensor	Sensor Synergies (incl. Up- & Downsscaling)	Source Years for SIBERIA-II	Pixel Size
EU Product	<u></u>	Operational	Improvement!		
ARD	Disturbances	Landsat IM		90 <u>vs</u> . 2000	25m to 2km
Riamaga	Nono	Nono		1007/0	20m to
DIVINASS	None	INONE	ASAD AD and repeat	199770 (Em/isot027	
			Dass oberence: ND)/		ONIII
				04)	
Disturbances				1000 2002	200m to
Disturbances			Multitemp ASAR	2002,	300m 10
	SnowCover		AV/HRR: ATSR-2	on a monthly	1.5.11
				hasis	
			AV/HRR MERIS VCT	2002 2003	1 km to
				2002, 2003	10km
Phenology	Landcover	MODIS	ASAR W/S AV/HRR	98-03	1 km to
	Snow Cover		MERIS?, SSM/I, VGT		10km
Freeze/ Thaw	Snow Extent	Quickscatt	(ASAR WS), MODIS,	1999-ongoing	(75m to)
	Phenology,		MERIS		10km
	(Permafrost)				
Land cover	Disturbances	MODIS	AATSR	2001-2004	300m to
	Waterbodies Biomass		ASAR WS		1km
	Phenologoy		MERIS		
Snow Depth &	Landcover	SSM/I	MODIS	1988-02	1 km to
Date of Snowmelt	Phenology		VGT		25km
Soil-moisture		Scatterometer	ASAR WS	92-2000	25km
(not operational)					
Wetlands	Landcover	ASAR WS	SSM/I	2004	75
Waterbodies	(Permafrost)			(2003/04)	

Lessons learned

Most important information from integrated Climate Change Earth System Observation :

Landcover and change, Spatial-temporal wetland dynamics, Above- ground biomass & long term changes.

Data availability

- Good EO data availability given existing technological capabilities
- Problems are repetition rates and long-term continuity
- In-situ data for validation severely missing

Data linkage

- Data integration with model attributes and spatial units not performed for all parameters due to missing in-situ information
- Interdisciplinary linkage of data and models is still ongoing

Data policies

- Results based on cost free EO data and availability of in-situ information
- \circ All products will be made available
- Open data policy is essential!

SIBERIA II land cover product

Multi-year MODIS 500 m product

Training and reference data

Local expert knowledge Landsat TM analysis Some classes from GLC2000 Overall 1000 training polygons LCCS-based legend (GLC2000)

Satellite data

In situ data

Dataset intercomparison

Sib II agreement map

Confusion matrix, agreement map and consensus map

Class	Prod. Agr.	User Agr.	
	(%)	(%)	
Tree Cover	78,18	99,09	
Shrub Cover	12,36	38,48	
Herbaceous	89,57	10,06	
Water Bodies	83,35	98,14	
Bare Areas	75,60	20,41	
Cultivated and Managed Areas	74,30	19,78	
Artificial Surfaces	37,28	40,68	
	Overall Agr:	66,55	

Ongoing land cover activities

MERIS FR Siberia mosaic

- Validation of land cover product with IIASA GIS database
 Focus on forest types
- MERIS based land cover mapping
 > 300 m spatial resolution
- Harmonization between existing products and regional validation
- Land cover for parameterization, calibration and validation for vegetation models

EXPECTED KEY IMPROVEMENTS FOR GREENHOUSE GAS MODELING and ACCOUNTING FROM EO

Compiled by W. Lucht and the SIBERIA-II EO-Model Interface Splinter Group, ESRIN, Nov. 7, 2003	LPJ-Model (Lund Potsdam Jena Dynamic Veg.Model)	SDGV Model (Sheffield Dynamic Global Vegetation Model)	IIASA GIS Account (Int. Inst. of Applied Systems Analysis Geoinformation Syst.)
BASELINE pre-SIBERIA-II	stand-alone runs	stand-alone runs 1900-2100	previous results for
EO-MODEL COMPARISONS → PROCESS IMPROVEMENT	Permafrost (from Freeze/Thaw) Snow PFT* parameters	Permafrost (from Freeze/Thaw) PFT* (Topography)	New semi-empirical models (eg for NPP) Process blocks include landscape properties
EO-ASSIMILATION INTO MODELS I → IMPROVEMENT OF SPATIAL CONSTRAINT "Land Cover (LC) vs. PFT*	Force Land Cover (for improved biomass patterns and C-balance)	Force Land Cover (for improved biomass patterns and C-balance)	Land Cover Disturbance pattern (incl. EO-fire) Wetland pattern
EO-ASSIMILIATION INTO MODELS II → IMPROVING SPATIAL- TEMPORAL CONSTRAINTS	fPAR assimilation (recent climate data crucial!)	fPAR assimilation (recent climate data crucial!)	Direct and indirect use of fPAR and LAI

*plant functional type

The Lund-Potsdam-Jena-Dynamic global vegetation model

Sitch, S. et al., 2003, Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biology, 9, 161-185.

Biomass modeling - effects of land cover

LPJ-No land cover

LPJ-With land cover

IIASA Forest inventory

Biomass in kgC/m² (1988-1992)

Improvement in biomass modeling by incorporation of satellite-derived land cover!

Mean carbon balance of Russia 1993-2003

LPJ-No land cover

LPJ-With land cover

Net Carbon Flux = NEP = Rh+FireC-NPP

With the constraint by land cover information:

- Less spatial variability.
- Russia's forests are simulated to mainly act as CO_2 sinks

NORTH

Objective: develop and implement a co-ordinated Observing and Forecasting System focused on the northern latitudes of the Earth

The NORTH Region comprises the <u>whole northern hemisphere boreal biome as</u> <u>well as their coastal zones</u>.

NORTH aims at:

- long-term, systematic, high quality, validated geo-observational products for monitoring and modelling key processes, many of which are unique to this region
- continuity of existing observation systems and improved European contribution to global observing needs
- a diagnostic and forecasting system for environmental change in the northern latitudes needed for adaptation and mitigation policies.

Summary

- Successful application of EO data for Mapping and Monitoring Siberia's land surface parameters and carbon/biomass Modeling
- Synergy between European EO data with other sources and data products
- Land cover challenges:
 - Flexible land cover definitions LCCS
 - \circ In situ data availability and reference for validation
 - Harmonization and interoperability
- All datasets will be made available
- Improved coordination and cooperation on the development, sharing and integration of land cover information, both in situ and satellite

Acknowledgment:

- European Commission for funding
- Land cover: Laine Skinner and Roman Gerlach
- LPJ modeling: Christian Beer and Wolfgang Lucht
- IIASA: Anatoly Shvidenko
- Siberia II coordinator: Maurizio Santoro
- ... the whole Siberia II Team

More Information:

- SIBERIA II: www.siberia2.uni-jena.de/
- GOFC-GOLD: www.gofc-gold.uni-jena.de/